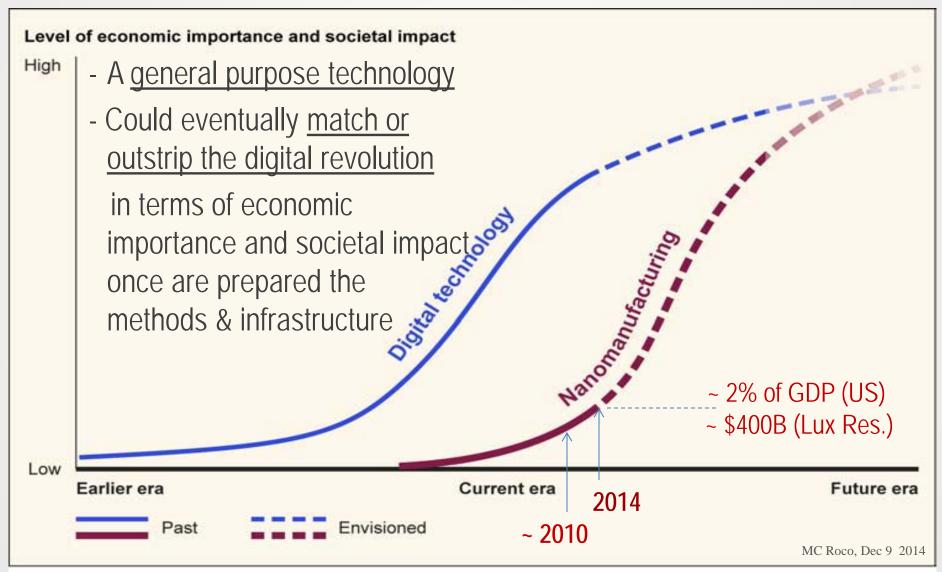
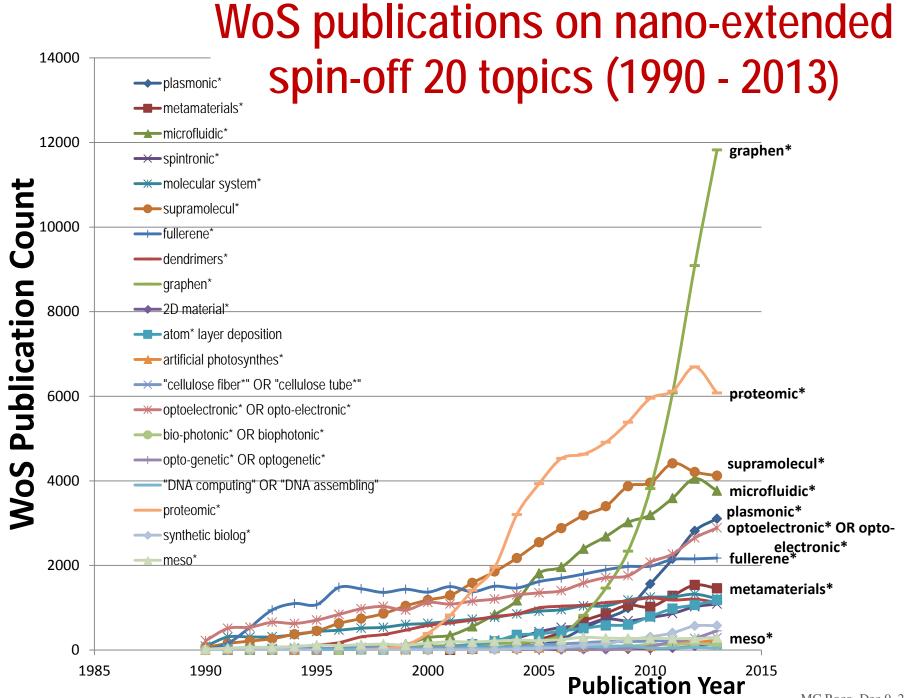


Nanoscale Science and Engineering at NSF

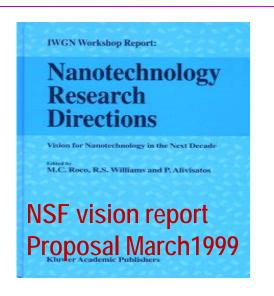
Mike Roco
NSF and NNI

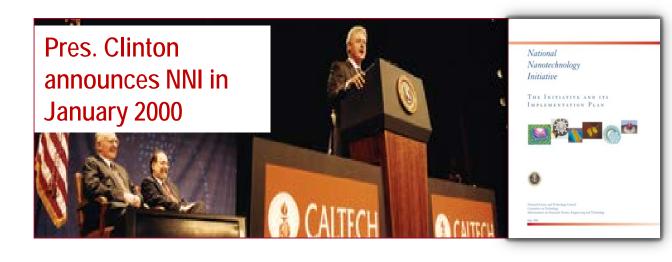

Topics

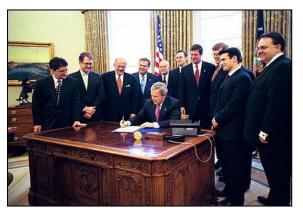

- 2000-2030 view of nanotechnology development in three stages: "S-curve"
- Nanoscale science and engineering activities at NSF

On priorities, outcomes and challenges

Conceptualization of "Nanomanufacturing" and "Digital Technology" megatrends: *S-curves*

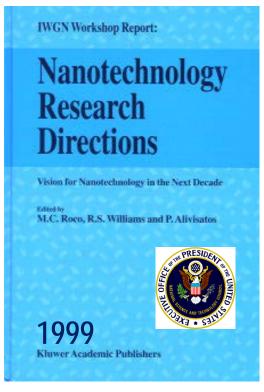

(GAO-14-181SP Forum on Nanomanufacturing, Report to Congress, 2014)



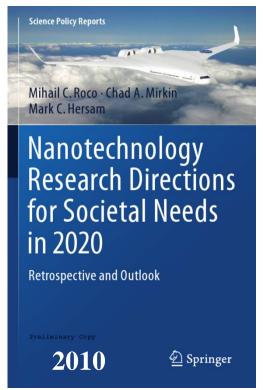


2014 nanotechnology is still a S&E field in formation

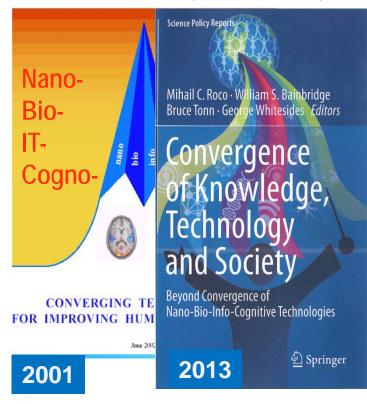
NNI in three administrations: Clinton, Bush and Obama



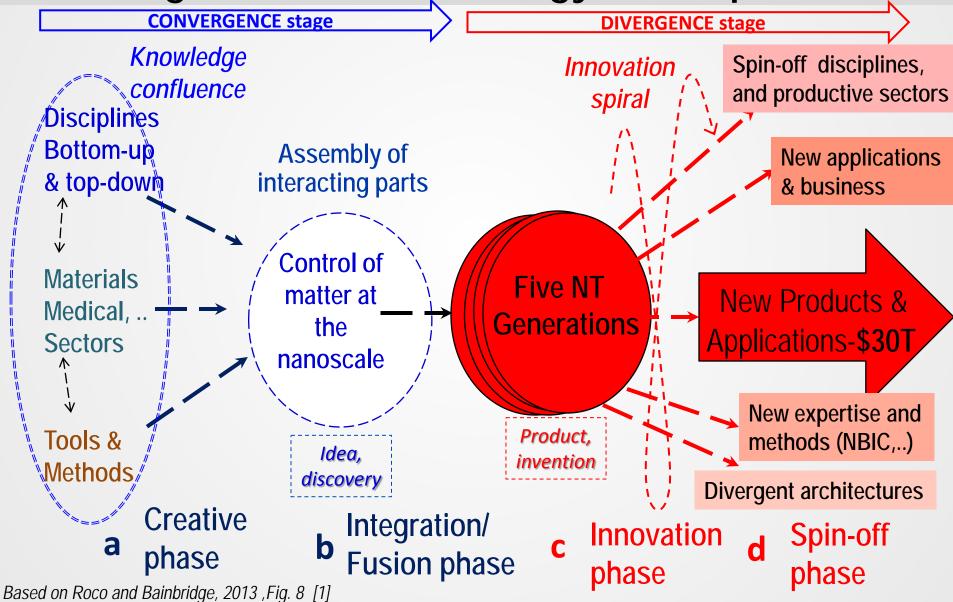
Pres. Bush
Signing 21st
Century
Nanotechnology
R&D Act –
December 2003



Nanotechnology: from scientific curiosity to immersion in socioeconomic projects


nano1 (2001-2010)

nano2 (2011-2020)


NBIC1 & 2 (2011-2030)

30 year vision to establish nanotechnology: changing focus and priorities; used by > 80 countries

Reports available on: www.wtec.org/nano2/ and www.wtec.org/NBIC2-report/ (Refs. 2-5)

2000-2030 Convergence-Divergence Cycle for global nanotechnology development

OVERVIEW: CREATING A GENERAL PURPOSE NANOTECHNOLOGY IN 3 STAGES (2000 – 2030)

(Refs. 2-5)

FIVE GENERATIONS NANOPRODUCTS

2030

DIVERGENCE

CONVERGENCE

New convergence platforms & economy immersion

~ 2021 — nano3 technology divergence — ~ 2030

Create spin-off nano-platforms in industry, medicine and services;

NS&E integration for general purpose technology ~ 2011 ← n(n()) system integration → ~ 2020

<u>Create nanosystems by science-based</u> <u>design/processes/technology integration</u>

Foundational interdisciplinary research at nanoscale

Create passive and active nanocomponents by semi-empirical design

5. NBIC Technologies Platforms

4. Molecular Nanosystems

3. Nanosystems

2. Active Nanostructures

1. Passive Nanostructures

2000

2010-2013 (data from Lux Research world industry survey, Jan 2014)

Global and US revenues from Nano-enabled products

(All budgets in <i>\$ billion</i>)	2001-2010 (NANO2 report)	2011 (Lux Res)	2012	2013	2010- 2013
Total world revenues	339	514	731	1,014	+ 676
US revenues	109.8	170.0	235.6	318.1	+ 208
World annual increase	annually ~ 25%	52%	42%	39%	44%
US annual increase	annually ~ 24%	55%	39%	35%	43%
US / World	in 2010: 32.4% average: ~ 35%	33%	32%	31%	32%

MC Roco, Dec 9 2014

Perception

"Nanotechnology" is not:

- Not "a buzz word" corresponds to the transition in nature and technology from individual atomic properties to their collective effects enabling diversity on the Earth
- Not "a polluant technology" aims at non-covalent assembling, low (p,T) & pollution, "how molecules like"
- Not "a mature field" going beyond the 1st generation of passive nanoparticles toward complex nanosystems
- Not "limited to unsolicited research" it needs new tools, infrastructure, unifying concepts in education, focus R&D efforts on emerging and bottleneck research

HHS/NIH

HHS/FDA

HHS/CDC/ NIOSH Tiosh

DOS

DOTr

IC/DNI

National Nanotechnology Initiative, 2000

(Vision: control of matter at nanoscale will bring a revolution in technology; see www.nano.gov)

PCAST Report on NNI, 2014:

Recommends New Grand Challenges,

expand infrastructure and education

USDA/FS

USDA/ARS

DOC/ **USPTO**

DOI/ **USGS**

DOEd

DOC/EDA

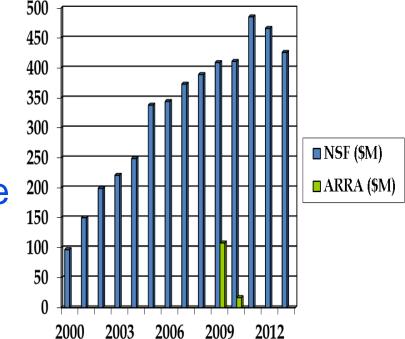
DOC/BIS

DHS

CPSC

U.S. National Nanotechnology Initiative

2001-2014


NSF – discovery, innovation and education in Nanoscale Science and Engineering (NSE)

www.nsf.gov/nano, www.nano.gov

FY 2015 Budget Request - \$412 million

FYs 2000-2014: NSF average investment is \$31.5 per capita (US)

- Fundamental research
 5,000 active projects
 in all NSF directorates
- Establishing the infrastructure
 26 large centers, 2 general user facilities, teams

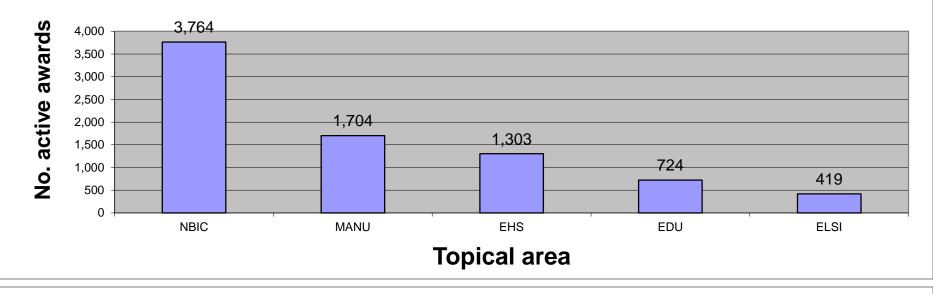
- Training and education
 - > 10,000 students and teachers/y; ~ \$30M/y

Several NSF announcements in FY 2015

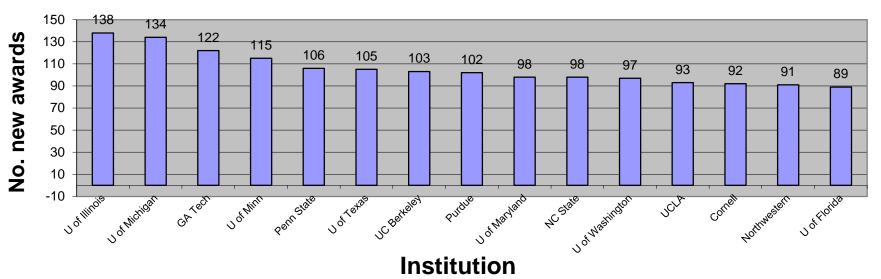
www.nsf.gov

- National Nanotechnology Coordinated Infrastructure, NNCP
- Scalable nanomanufacturing, SNM
- Two-Dimensional Atomic-layer Research and Engineering, 2-DARE/EFRI
- International nano-EHS collaboration: Communities of Research (http://us-eu.org/); Safe Implementation of Innovative Nanoscience and Nanotechnology, SIINN
- Nanotechnology Undergraduate Education, NUE
- Translational: GOALI; I/UCRP; PFI; Nano-ERC; I-Corps

I (innovation)-Corps

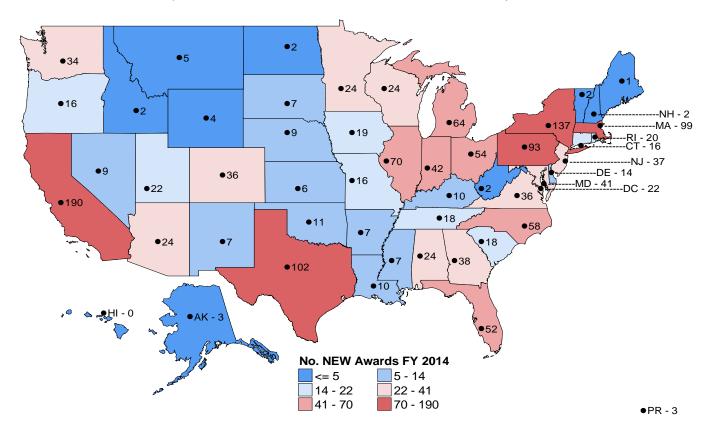

Leveraging NSF investments in fundamental research by supporting education and networking to transcending the "valley of death" after research

(http://www.nsf.gov/pubs/2012/nsf12586/nsf12586.htm)


NSE examples in 2014

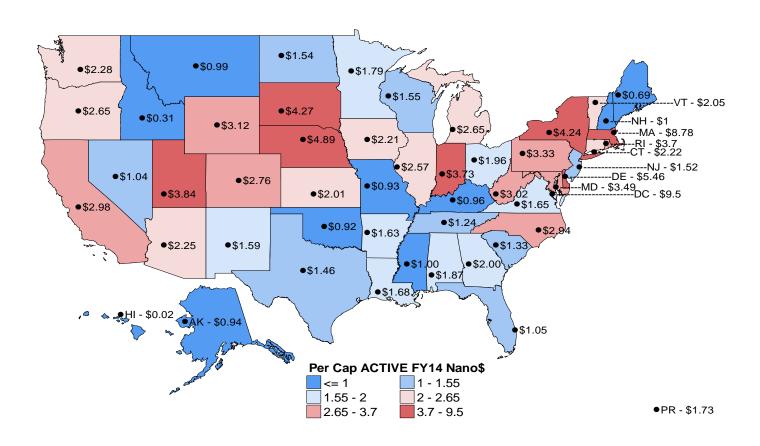
- High Quality Boron Nitride Nanotubes (PI: Yoke Khin Yap, MTU): Insulating heat sink materials for high-performance electronic devices and engines.
- Photocatalysts for Water Remediation (PI: Pelagia Gouma, SUNY): Ceramic nanocatalysts based on the CuO/WO3 system that are using the visible part of the solar energy to break down hydrocarbons in water
- Targeted Drug Delivery (PI: Rebecca Bader, Syracuse): Site-specific delivery of drugs by using polysialic acid (PSA)-based nanocarriers as platforms.

Number FY 2014 NSE awards in several topical areas


Top15 institutions with active FY 2014 NSE awards

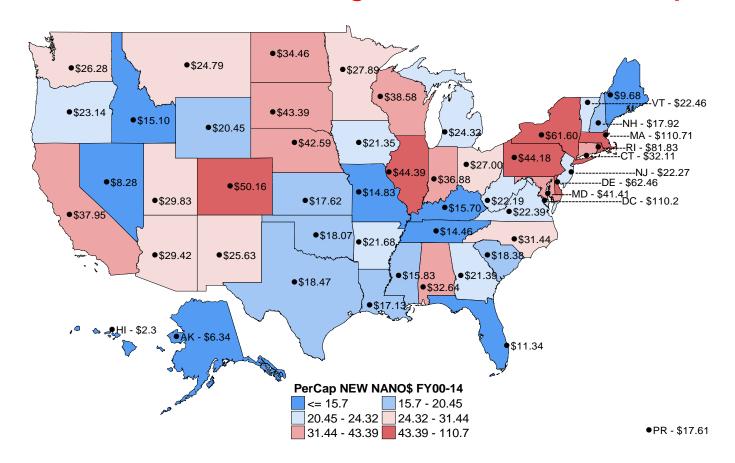
NSF's NSE number of new awards per state

FY 2014: U.S. total new awards = 1,569


(total active awards = 7,438)

AK 3; AL 24; AR 7; AZ 24; **CA 190**; CO 36; CT 16; DC 22; DE 14; FL 52; GA 38; HI 0; IA 19; ID 2; IL 70; IN 42; KS 6; KY 10; LA 10; **MA 99**; MD 41; ME 1; MI 64; MN 24; MO 16; MS 7; MT 5; NC 58; ND 2; NE 9; NH 2; NJ 37; NM 7; NV 9; **NY 137**; OH 54; OK 11; OR 16; **PA 93**; PR 3; RI 20; SC 18; SD 7; TN 18; **TX 102**; UT 22; VA 36; VT 2; WA 34; WI 24; WV 2; WY 4

NSF's NSE amount new awards per capita, by state


FY 2014: U.S. average amount = \$2.42 / capita

AK 0.94; AL 1.87; AR 1.63; AZ 2.25; CA 2.98; CO 2.76; CT 2.22; **DC 9.5**; **DE 5.46**; FL 1.05; GA 2; HI 0.02; IA 2.21; ID 0.31; IL 2.57; IN 3.73; KS 2.01; KY 0.96; LA 1.68; **MA 8.78**; MD 3.49; ME 0.69; MI 2.65; MN 1.79; MO 0.93; MS 1; MT 0.99; NC 2.94; ND 1.54; **NE 4.89**; NH 1; NJ 1.52; NM 1.59; NV 1.04; NY 4.24; OH 1.96; OK 0.92; OR 2.65; PA 3.33; PR 1.73; RI 3.7; SC 1.33; **SD 4.27**; TN 1.24; TX 1.46; UT 3.84; VA 1.65; VT 2.05; WA 2.28; WI 1.55; WV 3.02; WY 3.12

NSF's NSE amount new awards per capita, by state

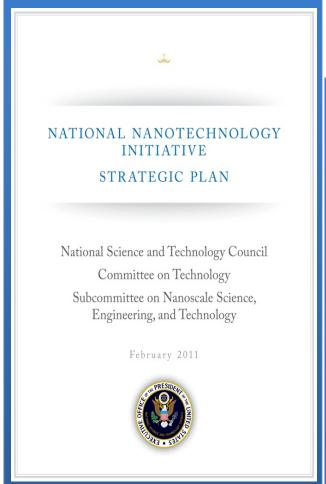
FYs 2000-2014: U.S. average amount = \$31.5 / capita

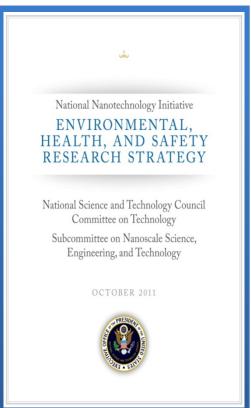
AK 6.34; AL 32.64; AR 21.68; AZ 29.42; CA 37.95; CO 50.16; CT 32.11; **DC 110.2**; **DE 62.46**; FL 11.34; GA 21.39; HI 2.3; IA 21.35; ID 15.1; IL 44.39; IN 36.88; KS 17.62; KY 15.7; LA 17.13; **MA 110.71**; MD 41.41; ME 9.68; MI 24.32; MN 27.89; MO 14.83; MS 15.83; MT 24.79; NC 31.44; ND 34.46; NE 42.59; NH 17.92; NJ 22.27; NM 25.63; NV 8.28; **NY 61.6**; OH 27; OK 18.07; OR 23.14; PA 44.18; PR 17.61; **RI 81.83**; SC 18.38; SD 43.39; TN 14.46; TX 18.47; UT 29.83; VA 22.39; VT 22.46; WA 26.28; WI 38.58; WV 22.19; WY 20.45

MC Roco, Dec 9 2014

Research Directions for Nanotechnology

- at four time scales -
- <u>30-year perspective (2000-2030)</u> of establishing nanotechnology in 3 stages: *component basics, system integration, technology divergence*
- <u>10-year research vision:</u> by 2010, by 2020, by 3030 with input from the national & international communities. (Ref: Nano1, Nano 2020, NBIC)
- 3-5 year S&T targets (Refs: 3-year 2011 & 2014 NNI Strategic Plans; five Nanotechnology Signature Initiatives, www.nano.gov)
- Annual fiscal year priority research areas: methods, emerging research, responsible nanotechnology, education & physical infrastructure for annual investments. (Ref: NNI & NSF annual budgets & WGs, ex: nseresearch.org; nsf.gov/nano)


nanol Twelve global trends to 2020


10 year perspective, www.wtec.org/nano2/

- Theory, modeling & simulation: x1000 faster, essential design
- "Direct" measurements x6000 brighter, accelerate R&D&use
- A shift from "passive" to "active" nanostructures/nanosystems
- Nanosystems, some self powered, self repairing, dynamic
- Penetration of nanotechnology in industry toward mass use; catalysts, electronics; innovation-platforms, consortia
- Nano-EHS more predictive, integrated with nanobio & env.
- Personalized nanomedicine from monitoring to treatment
- Photonics, electronics, magnetics new integrated capabilities
- Energy photosynthesis, storage use solar economic
- Enabling and integrating with new areas bio, info, cognition
- Earlier preparing nanotechnology workers system integration
- Governance of nano for societal benefit institutionalization

NNI periodical documents

Developing the Strategic (each 3 years) and Budget Plans (annual)

Strategic plans:

2000, 2005, 2008, 2011, 2014

Annual NNI Presidential Budget Supplements;

Additions in 2011:

- Measureable objectives for each NNI goal
- Nanotechnology Signature Initiatives

Topical reports,

such as NNI EHS Strategy (2011), sensors, informatics, four workshop reports, and follow up documents

Nanotechnology Signature Initiatives

National Nanotechnology Initiative (NNI), 2011-2014 (www.nano.gov)

Sustainable Nanomanufacturing
Nanoelectronics for 2020 and Beyond
Nanotechnology for Solar Energy
Nanotechnology for Sensors and Sensors for
Nanotechnology

Nanotechnology Knowledge Infrastructure

New topics under consideration for 2015: nanomodular systems, water filtration, nanocellulose, nanophotonics, nano for infrastructure, nano-city...

FY 2015 NS&E Priorities Research Areas

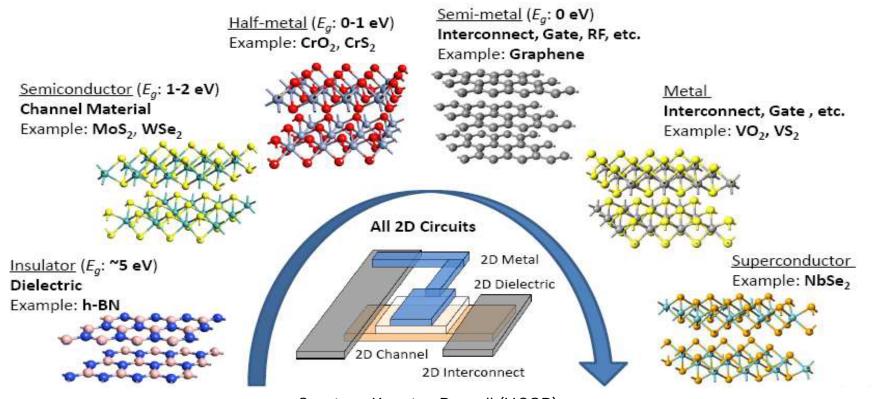
The long-term objective is systematic understanding, control and restructuring of matter at the nanoscale for societal benefit

Scientific challenges

- Theory at the nanoscale
 Ex: transition from quantum to classical physics, collective behavior; simultaneous nanoscale phenomena
- Non-equilibrium processes
- Designing new molecules with engineered functions
- New architectures for assemblies of nanocomponents
- The emergent behavior of nanosystems

FY 2015 NS&E Priorities Research Areas (2)

B. Investigative and Transformative Methods

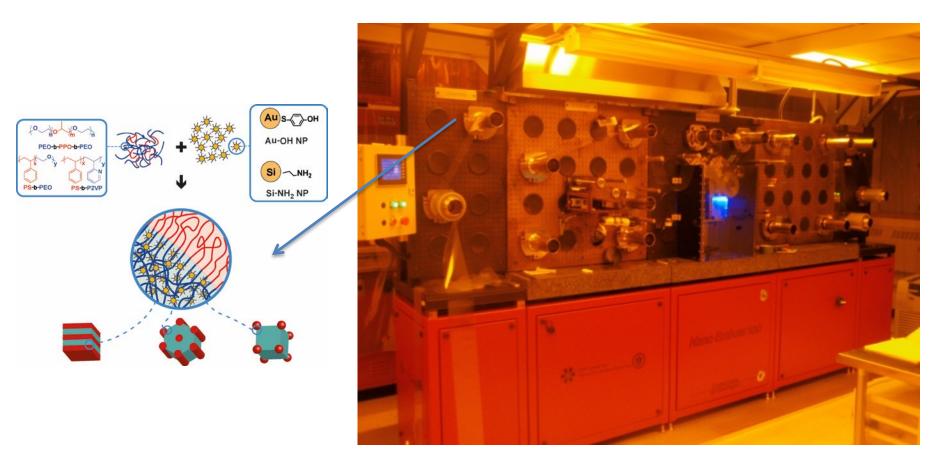

- Tools for measuring and restructuring with atomic precision and time resolution of chemical reactions
- Understanding and use of quantum phenomena
- Understanding and use of <u>multi-scale selfassembling</u>
- Nanobiotechnology sub-cellular and systems approach
- Nanomanufacturing scalable, modular, hybrid, on site
- Systems nanotechnology

Modular Nanosystems

Example: using 2D electronic materials

- A Broad Range of Choices:
 - From <u>Insulator</u> to <u>Superconductor</u>
 - Provide Possibility for 2D Circuits

Graphene Family (C, Si, BN)
MX₂ (TMD) Family (>88 members)



FY 2015 NS&E Priorities Research Areas (3)

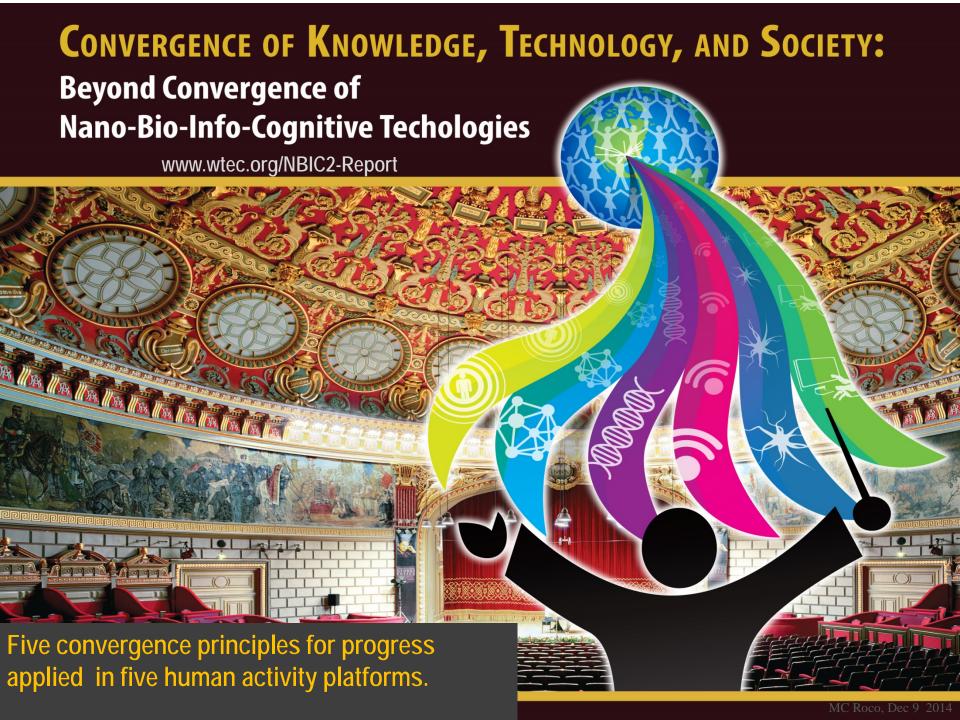
C. Integration of nanotechnology with other areas

- Nanomanufacturing for <u>sustainable environment</u>
- Replacing electron charge as the information carrier in electronics (Ex: Nanoelectronics Research Initiative)
- Energy conversion; water filtration / desalinization; food
- Nano-bio interfaces between the human body and manmade devices
- Nano-informatics for communication, nanosystem design
- Converging science, engineering and technology

Additive selfassembling on roll-to-roll process

(U. Mass. - Amherst, J. Watkins)

Additive-driven self assembly yields well ordered periodic assemblies of nanoparticle polymer hybrids (left) while R2R nanoimprint lithography produces sub-100 nm device patterns 70 nm grating pattern shown (right).


FY 2015 NSF priority research areas (4)

D. Societal dimensions of nanotechnology

 Understanding and sustainable ENV, including research for natural / incidental / manufactured nanomaterials

Key nano- EHS priorities at NSF

- New instrumentation for nanoparticle characterization and nanotoxicity
- Transport phenomena and physic- chem.- biological processes
- Nano-bio interface: ecological and human health implications
- Predictive models for nanomaterials interaction with cells/living tissues
- Separation of nanoparticles from fluids
- Safety of manufacturing nanoparticles
- Earlier formal and informal education
- Social issues and public engagement
- Long-term and convergence approach (government wide)

Several trends and challenges

- Integration of knowledge at the nanoscale and of nanocomponents in nanosystems. Ex: Nanomodular systems; Nanoengineering; NBIC systems with emerging nano-bio behavior (hybrid, robot, synthetic)
- <u>Experimental and simulation control</u> of molecular self-assembly, quantum behavior, synthesis new molecules, direct measurements, and interaction of biological processes
- Molecular medicine for individualized healthcare. Ex: preventive, subcellular detection of cancer such as bio-photonics and –genetics
- Nanotechnology for increased productivity and sustainability.
 Ex: Reducing energy dissipation in nanoelectronics by >100;
 Water resources; Wood, agriculture and food systems
- Institutionalize nanotechnology: create standing organizations and programs for sustained support of future nanotechnology efforts

FY 2014 NSF's NSE Grantees Conference

- Contents: Keynotes, posters and panels to facilitate exchanges, partnerships, networking, mutual evaluation and research planning – on selected topics in 2014
- ➤ Focus: progress in four fundamental areas; 8 NSECs graduation; increased complexity, system approach, convergence with bio/info/cogno; identify new research and education trends
- > Meetings between researchers and program officers

Related publications

- "The new world of discovery, invention, and innovation: convergence of knowledge, technology and society" (JNR 2013a)
- 2. NANO1: "Nanotechnology research directions: Vision for the next decade" (Springer, 316p, 2000)
- 3. NANO2: "Nanotechnology research directions for societal needs in 2020" (Springer, 690p, 2011a)
- 4. NBIC1: "Converging technologies for improving human performance: nano-bio-info-cognition" (Springer, 468p, 2003)
- 5. NBIC2: "Convergence of knowledge, technology and society: Beyond NBIC" (Springer, 604p, 2013b)
- 6. "Nanotechnology: from discovery to innovation and socioeconomic projects: 2000-2020" (CEP, 2011b)
- 7. "Mapping nanotechnology innovation and knowledge: global and longitudinal patent and literature" (Springer, 330p, 2009)
- 8. "Global nanotechnology development from 1991 to 2012" (JNR 2013c)
- 9. "Long View of Nanotechnology Development: the NNI at 10 Years" (JNR, 2011d)